Slow cruciform transitions in palindromic DNA.
نویسندگان
چکیده
Extrusion of cruciform structures in self-complementary regions of DNA is known to be favored by negative supercoiling of DNA. We show here that, in moderately supercoiled DNA, cruciform extrusion is a very slow process. In plasmid pUC7 DNA, with a 48-base-pair palindrome, the half-time of extrusion at 50 degrees C is typically several hours; rates are even slower at lower temperature. The rates increase significantly with increasing DNA supercoiling but are only slightly faster in DNA species with much longer palindromes. The reabsorption of cruciform arms is also very slow. The equilibrium between cruciform and regular DNA structures is sensitive to changes in the linking number. Measurement of this equilibrium leads to an estimate of 18 kcal/mol (75.3 kJ/mol) for the free energy required to generate a cruciform structure. In bacterial cells, cruciform DNA may be rare, even when it is thermodynamically favored, because of its slow formation.
منابع مشابه
Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical exc...
متن کاملChromosomal protein HMG1 removes the transcriptional block caused by the cruciform in supercoiled DNA.
The binding of chromosomal protein HMG1 to a palindromic sequence that can form the cruciform structure in supercoiled DNA and the subsequent effect on the transcription of the sequence were examined with pBR322 and its derivative plasmids. The plasmid DNA under negative supercoiling showed a selective sensitivity to nuclease S1. HMG1 protected against the nuclease S1 digestion. The results of ...
متن کاملComparison of physical and genetic properties of palindromic DNA sequences.
Some viable palindromic DNA sequences were found to cause an increase in the recovery of genetic recombinants. Although these palindromes contained no Chi sites, their presence in cis caused apparent recA+-dependent recombination to increase severalfold. This biological property did not correlate with the physical properties of the palindromes' extrusion of cruciform structures in vitro. Thus, ...
متن کاملDiethyl pyrocarbonate: a chemical probe for DNA cruciforms.
Two palindromic DNA sequences were analyzed with respect to their chemical reactivities with diethyl pyrocarbonate. In negatively supercoiled plasmid templates enhanced N7 carbethoxylation was found with individual purines located in presumptive single-stranded loops of DNA cruciform structures. No enhanced reactivity at these positions was observed in linear, relaxed or low superhelical densit...
متن کاملPalindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements
Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure-single-stranded "hairpin" or double-stranded "cruciform"-has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 80 18 شماره
صفحات -
تاریخ انتشار 1983